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Abstract
Recently there has been interest in finding a potential formulation for stochastic
partial differential equations (SPDEs). The rationale behind this idea lies in
obtaining all the dynamical information of the system under study from one
single expression. In this letter we formally provide a general Lagrangian
formalism for SPDEs using the Hojman et al method. We show that it is possible
to write the corresponding effective potential starting from an s-equivalent
Lagrangian, and that this potential is able to reproduce all the dynamics of the
system once a special differential operator has been applied. This procedure
can be used to study the complete time evolution and spatial inhomogeneities of
the system under consideration, and is also suitable for the statistical mechanics
description of the problem.

PACS numbers: 45.20.Jj, 02.50.−r, 02.50.Ey

Structural development in cosmology and biology, pattern-formation, symmetry breaking,
population dynamics, chemical chaos and turbulence [1–4], are just a few cases of a
wide spectrum of phenomena for which self-regulation, oscillation, adaptiveness and multi-
equilibrium behaviours can be adequately modelled by means of stochastic partial differential
equations (SPDEs). Few general techniques are available for their study, but due to its
importance and versatility, efforts have been made to find a formalism from which all the
relevant physical information of the system can be obtained [5, 6, 10–13].

Thus, effective actions can be found, for example, by means of the Martin–Siggia–Rose
formalism [5], a perturbative procedure that makes use of both physical and ‘conjugate’
(auxiliary) fields (for details concerning the difficulties of the method, see [6]). On the other
hand, a variational formalism has been devised by Gambár and Márkus (see for example [7–9])
as groundwork for proposing a field theory for non-equilibrium thermodynamical systems,
giving valuable information about the entropy in terms of current densities and thermodynamic
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forces. Also, Hochberg et al have proposed in a series of papers [6, 10, 11] a ‘direct’ approach,
finding effective actions and potentials for SPDEs using a functional integral formalism similar
in structure to those of quantum field theory. But as reported [12], the associated effective
potential does not provide information about the time evolution and spatial inhomogeneities
of the system under consideration, and the effective action is very difficult to calculate exactly.
More recently Ao [13] has reported a worth consulting novel approach for constructing
potentials associated with SPDEs.

It is not surprising that variational formulations for SPDEs are not abundant in the
literature. Indeed, it is widely accepted that a variational principle cannot be constructed for
an arbitrary differential equation [14]. There is a strict mathematical theorem that shows its
existence for a given situation, and whose application reduces the number of equations in
physics that have a Lagrangian–Hamiltonian formulation [15, 16]. However, there are several
methods in the literature devised to circumvent this condition and even some proposals for
modified variational principles [14, 17–19].

Nonetheless, there is an interesting different approach, known as the inverse problem of
the variational calculus (see, for example, [20]). It consists in studying the existence and
uniqueness (or multiplicity) of Lagrangians for systems of differential equations, i.e. finding
the Lagrangian, if it exists, from the equations of motion, instead of the traditional approach.
This procedure has become quite useful and one important result is that of Hojman et al [21],
who have proven that it is possible to construct the Lagrangian for any regular mechanical
system as a linear combination of its own equations of motion. This particular construction,
for example, is much wider than the traditional definition L = T − V , which is only true
when the ‘forces’ involved are derivable from position-dependent potentials (or in some cases
from velocity-dependent potentials); therefore it may be used for general non-conservative
systems. Its application to the study of SPDEs may provide additional understanding of the
internal structure of these phenomena and also enables the use of a well-known mathematical
machinery to find conserved quantities, equilibria and stability cases, and other dynamical
properties.

The aim of this letter is to establish a variational and effective potential formalism for
the study of SPDEs with arbitrary additive noise function. This approach has the particular
advantages that it provides Lagrange–Hamilton functionals in a very direct way starting from
the equations of motion, and that the effective potential deduced is able to take account of the
stability and equilibria conditions, temporal evolution, anisotropies and inhomogeneities of
the system.

We will consider in this work SPDEs that can be written as

�ψi − �i(ψj ) − ξ i = 0 (1)

for i, j = 1, . . . , m where m is the number of degrees of freedom, ψi ≡ ψi(qj , t) denotes
the components of a vector field whose arguments are, in the general case, spatial coordinates
qj and time t; � is an arbitrary linear space or time (or both) differential operator that does
not depend on the field ψi ; �i(ψj ) is any, usually nonlinear, deterministic forcing term and
ξ i ≡ ξ i(qj , t) is a random function of its arguments describing the stochastic force (noise) in
the system. In table 1 some particular cases of � operators and �i functions are presented (ap

are the coefficients of the polynomial of order p while κ and ω are real scalars; for details see
[6] and references therein). Hereafter, Einstein summation convention and Euclidian metric
tensor are assumed. The (additive) noise functions to be considered here are completely
arbitrary.

It is important to bear in mind that even when it is true that different sorts of noise and
different behaviours of the underlying deterministic partial differential equations (hyperbolic,
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Table 1. Some operators and dissipation functions.

Operator � Function �i(ψj )

D’Alembertian ∂2
t − ∇2 Polynomial ap[ψi ]p

Diffusion ∂t − κ∇2 Burgers (noisy) ω
2 (∇ψi)2

Temporal ∂t Purely dissipative − δH(ψj )

δψi

parabolic, linear or nonlinear) require different techniques to find the corresponding solutions,
those may be unnecessary, as we will presently show, for obtaining a variational/effective
potential formulation of the problem.

The equation of motion for a mechanical system arises from a set of m differential
equations. For conceptual reasons, it is suitable to rewrite (1) as equations of motion in the
variational sense

Gi ≡ ψ̈ i − F i(ψ̇j , ∂kψ
j , ψj , t) = 0 (2)

where F i behaves as ‘forces’ (both deterministic and stochastic) divided by unitary mass and
may include spatial derivatives of the field; the dot stands for total temporal derivative.

In the inverse problem of the variational calculus the Lagrangian L(ψ̇j , ψj , t) is
constructed such that relations (2) can be effectively deduced via Euler–Lagrange equations.
The existence of such a Lagrangian is studied using the Helmholtz conditions [22]

∂Gi

∂ψ̈j
= ∂Gj

∂ψ̈i

∂Gi

∂ψ̇j
+

∂Gj

∂ψ̇i
= d

dt

(
∂Gi

∂ψ̈j
+

∂Gj

∂ψ̈i

)
∂Gi

∂ψj
− ∂Gj

∂ψi
= 1

2

d

dt

(
∂Gi

∂ψ̇j
− ∂Gj

∂ψ̇i

)


. (3)

Nevertheless, these conditions do not give any warranty about uniqueness. Two
Lagrangians are said to be solution-equivalent (or s-equivalent) if they differ only by a global
multiplicative constant, η, and a total time derivative of some gauge 	(ψ̇j , ψj , t):

ηL = L̃ − d	

dt
. (4)

The different systems of equations they provide, however, have exactly the same equations of
motion.

The Hojman et al method enables us to write L̃ as a linear combination of the known
equations of motion; then for i, j = 1, . . . , m,

L̃ = µi[ψ̈
i − F i] (5)

where

µi(ψ̇
j , ψj , t) ≡ D1

∂D2

∂ψ̇i
+ · · · + D2m−1

∂D2m

∂ψ̇i
(6)

= − ∂	

∂ψ̇i
. (7)

In equation (6) the quantities under partial derivative (D2m) are constants of motion of the
system, while the corresponding coefficients (D2m−1) are arbitrary functions whose arguments
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are constants of motion. There are plenty of ways to write these D2m functions. For instance,
one possible form for the D2m−1 functions, given the D2m conserved quantities, is presented
in [20].

When the conserved quantities are unknown the problem is reduced to find µi such that
the following system

∂µi

∂
.

ψ
j

= ∂µj

∂
.

ψ
i

d

dt

(
d

dt
µi + µj

∂F j

∂ψ̇i

)
− µj

∂F j

∂ψ̇i
= 0

 (8)

is satisfied, and

det

[
∂

∂ψ̇j

(
d

dt
µi + µk

∂F k

∂ψ̇i

)
+

∂µj

∂ψi

]
�= 0 (9)

where the on-shell derivative d
dt

is defined such that it behaves as a usual total time derivative
taking into consideration that, on the shell, equation (2) is always true.

It is important to remark that this method is useful for both second-order and first-order
differential equations [21]. For further details the reader is exhorted to review [20, 21] and the
references therein.

By virtue of equation (5), the general Lagrangian for SPDEs of the form (1) can be written
as

L̃ = µi(�ψi − �i − ξ i), (10)

where the µi parameters must be determined for each case in study.
It can be shown that the 2m constants of motion of equation (10) can be formally cast in

D(2i−1) = ψi −
∫

ψ̇ idt (11)

D(2i) = ψ̇ i −
∫

F idt. (12)

It is clear that equations (11) and (12) must satisfy conditions (8) and (9) of the Hojman et al
method.

Once the Lagrangian (10) is completely determined, the corresponding Hamiltonian can
be found trivially by the usual Legendre transformation, and, as will be shown in the following
lines, also the effective potential can be written straightforwardly.

Let us now define the following differential operator

∗
∇ i ≡ 1

ψ̇j

(
d

dt

)j

i

. (13)

Then, let us require that the effective potential, Veff , be such that
∗
∇ iVeff = −Fi. (14)

Note that if Veff ≡ Veff(ψ̇
j , ψj , t), then(

d

dt

)j

i

≡ δ
j

i

∂

∂t
+ ψ̇j ∂

∂ψi
+ F j ∂

∂ψ̇i
(15)



Letter to the Editor L97

and thus, in the conservative case, i.e. Veff ≡ Veff(ψ) = V , equation (14) provides (from now
on the symbol

.= indicates that the relation is valid only in special cases)
∗
∇ iVeff

.= ∂V

∂ψi
= −Fi (16)

which is equivalent to the standard relation ∇iV = −Fi when the vector field ψi coincides
with the spatial coordinate qi .

Now, we are interested in finding a gauge 	 = λ such that equations (10) and (5) provide
an s-equivalent Lagrangian, L, that can be written as the difference between some function
(kinetic energy) Teff and the effective potential Veff . In consequence (for the sake of simplicity,
η = 1)

Veff = Teff − µi(�ψi − �i − ξ i) +
dλ

dt
. (17)

For a general non-conservative system, Teff can be written as [23]

Teff ≡ αA(ψi) + βB(ψ̇i, ψi) + γG(ψ̇iψ̇ i , ψ
i), (18)

and thus it is necessary to determine the scalars α, β, γ and the functions A(ψi),

B(ψ̇i, ψi),G(ψ̇iψ̇ i , ψ
i) to completely define Veff .

It should be useful to write the kinetic energy of the system in the traditional quadratic
form

Teff
.= 1

2 ψ̇ iψ̇ i . (19)

In order to do so, it is necessary to find the corresponding gauge first. Equation (14) provides
the necessary constraint; thus, by taking the nabla-star derivative at both sides of equation (17)
we obtain, for non-coupled equations,

∗
∇ i

[
dλ

dt
− µj(�ψj − �j − ξ j )

]
= −(Fi + ψ̈ i). (20)

Solving this equation for the time derivative of the gauge λ, we have

dλ

dt
= −

∫
ψ̇ i(Fi + ψ̈ i)dt + µi(�ψi − �i − ξ i) + V0 (21)

where V0 is an arbitrary constant of integration. Consequently, following equation (17)

Veff
.= V0 +

1

2
ψ̇ iψ̇ i −

∫
ψ̇ i(Fi + ψ̈ i)dt (22)

which is the general effective potential for equation (1) given the choice (19) for the kinetic
energy.

In summary, we have presented in this letter a novel way to provide both variational and
effective potential formulations for general SPDEs with additive noise function. There are
several useful applications of this result. Once the Hamiltonian is obtained, for example,
quantization of systems described by equation (1) follows straightforwardly. Also, the
Hamilton–Jacobi approach may help to solve the equations of motion of a system via a
convenient, if possible, variable separation.

The effective potential (17) is constructed such that it contains all the dynamical
information of the system. In general, it may have explicit dependence on time, on the
field itself and on the derivatives of the field; certainly, the nabla-star operator identifies the
contribution of each functional dependence by means of specific terms, as can be seen in
equation (15).

As reported [12, 13], in other approaches the effective potential is useful only for stationary
or static regimes; the approach presented here can be used to study those cases, the complete
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temporal evolution of (1) and also the equilibria and stability states. The present potential
formulation is based on a classical mechanics approach; there is no need of auxiliary or ghost
fields. Nor Fokker–Planck equations neither special assumptions about the additive noise
function are invoked in the construction.

The important relation between the effective potential (17) and the statistical mechanics
deserves a detailed discussion, and it will be treated elsewhere. However, it can be shown that
this potential appears in the steady state solution of the corresponding Fokker–Planck equation
(or even the Klein–Kramers equation) [2], a Boltzmann–Gibbs distribution

℘0(ψ
i) = 1

Z
exp(−Veff(ψ

i)) (23)

with Z as the partition function.
A detailed application of this procedure to several particular cases of SPDEs, such

as Langevin, inhomogeneous Klein–Gordon, and diffusion equations from a mechanical,
statistical and quantum point of view is in course of preparation.
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[10] Hochberg D, Molina-Parı́s C, Pérez-Mercader J and Visser M 2000 J. Stat. Phys. 99 903–41
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